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Abstract
A classical theorem of Stone and von Neumann states that the Schrödinger
representation is, up to unitary equivalences, the only irreducible representation
of the Heisenberg group on the Hilbert space of square-integrable functions on
configuration space. Using the Wigner–Moyal transform, we construct an
irreducible representation of the Heisenberg group on a certain Hilbert space of
square-integrable functions defined on phase space. This allows us to extend
the usual Weyl calculus into a phase-space calculus and leads us to a quantum
mechanics in phase space, equivalent to standard quantum mechanics. We
also briefly discuss the extension of metaplectic operators to phase space and
the probabilistic interpretation of the solutions of the phase-space Schrödinger
equation.

PACS numbers: 02.40.Vh, 03.65.−w

1. Introduction and motivations

In a recent letter [12], we have shortly discussed and justified the Schrödinger equation in
phase space

ih̄
∂

∂t
�(x, p, t) = H

(
x + ih̄

∂

∂p
,−ih̄

∂

∂x

)
�(x, p, t)

proposed by Torres-Vega and Frederick in [28, 29] and obtained by these authors using a
generalized version of the Husimi transform. In this paper, we set out to sketch a complete
theory for the related equation

ih̄
∂
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�(x, p, t) = H
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∂
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1
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p − ih̄

∂
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)
�(x, p, t),
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where the variables x and p are placed on equal footing. We will see that in addition to
the greater aesthetic1 appeal of the latter equation, it has the advantage of yielding a more
straightforward physical interpretation of its solutions.

This paper is reasonably self-contained; we have given rather detailed proofs since there
are many technicalities which are not always immediately obvious.

1.1. General discussion

One of the pillars of non-relativistic quantum mechanics is Schrödinger’s equation

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

�r ψ + V (�r, t)ψ, (1)

where the operator on the right-hand side is obtained from the Hamiltonian function

H = 1

2m
�p2 + V (�r, t)

by replacing the momentum vector �p by the operator −ih̄∇�r and letting the position vector �r
stand as it is. But how did Schrödinger arrive at this equation? He arrived at it using what the
novelist Arthur Koestler called a ‘sleepwalker’ argument, elaborating on Hamilton’s optical–
mechanical analogy and taking several mathematically illegitimate steps (see [15] or [18] for
a thorough discussion of Schrödinger’s argument). In fact, Schrödinger’s equation can be
rigorously justified for quadratic or linear potentials if one uses the theory of the metaplectic
group (see our discussion in [9], chapters 6 and 7), but it cannot be mathematically justified
for arbitrary Hamiltonian functions; it can only be made plausible by using formal analogies:
this is what is done in all texts on quantum mechanics, and Dirac’s treatise ([4], pp 108–11) is
of course not an exception. The gist of Schrödinger’s argument, recast in modern terms, is the
following: a ‘matter wave’ consists—as all waves do—of an amplitude and a phase. Consider
now a particle with initial position vector �r0 = (x(0), y(0), z(0)). That particle moves under
the influence of some potential and its position vector becomes �r(t) = (x(t), y(t), z(t)) at
time t. The change of phase of the matter wave associated with the particle is then postulated
to be the integral

�� = 1

h̄

∫
�

�p · d�r − H dt (2)

calculated along the arc of trajectory � joining the initial point �r0 to the final point �r(t) in
spacetime; �p = (px, py, pz) is the momentum vector and H = H(�r, �p, t) is the Hamiltonian
function. The choice (2) for �� is dictated by the fact that it represents the variation in
action when the particle moves from its initial position to its final position. Now, in most
cases of interest, the initial and final position vectors uniquely determine the initial and final
momentum vectors if t is sufficiently small, so that h̄�� can be identified with Hamilton’s
principal function W(�r0, �r, t) (see [7, 9]) and the latter is a solution of Hamilton–Jacobi’s
equation

∂W

∂t
+ H(�r,∇�rW, t) = 0. (3)

Schrödinger knew that the properties of the ‘action form’

A = �p · d�r − H dt (4)

led to this equation, and this was all he needed to describe the time evolution of the phase.
We now make an essential remark: the property that �� can be identified with Hamilton’s

1 Admittedly, this is a subjective criterion!
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principal function is intimately related to the fact that the action form A is a relative integral
invariant. This means that if γ and γ ′ are two closed curves in the (�r, �p, t) space encircling
the same tube of Hamiltonian trajectories, then we have∮

γ

�p · d�r − H dt =
∮

γ ′
�p · d�r − H dt

(this formula is a consequence of Stoke’s theorem and generalizes to an arbitrary number of
dimensions; see for instance [1, 9]).

1.2. Other possible Schrödinger equations

We now make the following crucial observation, upon which much of this paper relies: the
action form A is not the only relative integral invariant associated with the Hamiltonian H. In
fact, for any real scalar λ, the differential form

Aλ = λ �p · d�r + (λ − 1)�r · d �p − H dt

also satisfies the equality∮
γ

Aλ =
∮

γ ′
Aλ

and is hence also a relative integral invariant. This is immediately checked by noting that
since γ is a closed curve we have∮

γ

�p · d�r + �r · d �p =
∮

γ

d( �p · �r) = 0

and hence ∮
γ

λ �p · d�r + (λ − 1)�r · d �p =
∮

γ

λ �p · d�r + (1 − λ)λ �p · d�r =
∮

γ

�p · d�r.

A particularly neat choice is λ = 1/2; it leads to the ‘symmetrized action’

A1/2 = 1
2 ( �p · d�r − �r · d �p) − H dt, (5)

where the position and momentum variables now play identical roles, up to the sign.
Let us investigate the quantum-mechanical consequences of the choice λ = 1/2. We

consider the very simple situation where the Hamiltonian function is linear in the position and
momentum variables; more specifically, we assume that

H0 = �p · �r0 − �p0 · �r.
The solutions of the associated equations of motion

d

dt
�r(t) = �r0 and

d

dt
�p(t) = �p0

are the functions

�r(t) = �r(0) + �r0t and �p(t) = �p(0) + �p0t;
hence, the motion is just translation in phase space in the direction of the vector (�r0, �p0). An
immediate calculation shows that the standard change in phase (2), expressed in terms of the
final position �r = �r(t), is

�� = �(�r; t) = 1

h̄

(
t �p0 · �r − t2

2
�p0 · �r0

)
; (6)
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this function, of course, trivially satisfies the Hamilton–Jacobi equation for H0. Assuming that
the initial wavefunction is ψ0 = ψ0(�r), a straightforward calculation shows that the function

ψ(�r, t) = exp
[ i

h̄
�(�r; t)

]
ψ0(�r − t�r0) (7)

is a solution of the standard Schrödinger equation

ih̄
∂ψ

∂t
= (−ih̄�r0 · ∇�r − �p0 · �r)ψ = H0(�r,−ih̄∇r )ψ.

Suppose now that instead of using definition (2) for the change in phase, we use instead the
modified action associated with A1/2. Then,

��1/2 = 1

h̄

∫
�

1

2
( �p · d�r − �r · d �p) − H dt; (8)

integrating and replacing �r(0) with �r − �r0t and �p(0) with �p − �p0t , this leads to the expression

�1/2(�r, �p; t) = t

2
( �p · �r0 − �p0 · �r),

which, in addition to time, depends on both �r and �p; it is thus defined on phase space, and not
on configuration space as was the case for (6). The function �1/2(�r, �p; t) does not verify the
ordinary Hamilton–Jacobi equation (3); it however verifies its symmetrized variant

∂�1/2

∂t
+ H0

(
1

2
�r + ∇�p�1/2,

1

2
�p − ∇�r�1/2

)
= 0 (9)

as is checked by a straightforward calculation. This property opens the gates to quantum
mechanics in phase space: assume again that we have an initial wavefunction ψ0 = ψ0(�r)
and set

�(�r, �p, t) = exp
[ i

h̄
�1/2(�r; t)

]
ψ0(�r − t�r0). (10)

Using (9), one finds that

ih̄
∂�

∂t
= Ĥ0

(
1

2
�r + ih̄∇�p,

1

2
�p − ih̄∇�r

)
�; (11)

there is in fact no reason to assume that the initial wavefunction depends only on �r . Choosing
�0 = �0(�r, �p), the same argument shows that the function

�(�r, �p, t) = exp
[ i

h̄
�1/2(�r; t)

]
�0(�r − t�r0, �p − t �p0) (12)

is a solution of (11) with initial condition �0. Observe that the operator Ĥ0 in the ‘phase-
space Schrödinger equation’ (11) is obtained from the Hamiltonian function H0 using the
phase-space quantization rule

x −→ X̂ = 1

2
x + ih̄

∂

∂px

, px −→ P̂ x = 1

2
px − ih̄

∂

∂x

and similar rules for the y, z variables. The operators X̂, P̂ x , etc obey the usual canonical
commutation relations

[X̂, P̂ x] = −ih̄, [Ŷ , P̂ y] = −ih̄, [Ẑ, P̂ z] = −ih̄

and this suggests that these quantization rules could be consistent with the existence of an
irreducible representation of the Heisenberg group in phase space. This will be proved in
section 3, where we will explicitly construct this representation.

Equation (11) corresponds, as we have seen, to the choice λ = 1/2 for the integral
invariant Aλ; any other choice is per se equally good. For instance, λ = 1 corresponds
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to the standard Schrödinger equation; if we took λ = 0, we would obtain the phase-space
Schrödinger equation

ih̄
∂�

∂t
= H0(�r + ih̄∇�p,−ih̄∇r )� (13)

considered by Torres-Vega and Frederick [28, 29] and discussed in [12].
The aesthetic appeal of the Schrödinger equation in phase space in the form (11) is

indisputable, because it reinstates in quantum mechanics the symmetry of classical mechanics
in its Hamiltonian formulation

d�r
dt

= ∇�pH,
d �p
dt

= −∇�rH ; (14)

in both (1) and (14), the variables x and p are placed, up to a change of sign, on the same
footing.

1.3. Notations

We will work with systems having N degrees of freedom; we denote the position vector of
such a system by x = (x1, . . . , xN) and its momentum vector by p = (p1, . . . , pN). We will
also use the collective notation z = (x, p) for the generic phase-space variable. Configuration
space is denoted by RN

x and phase space by R2N
z . The generalized gradients in x and p are

written as follows:
∂

∂x
=

(
∂

∂x1
, . . . ,

∂

∂xN

)
,

∂

∂p
=

(
∂

∂p1
, . . . ,

∂

∂pN

)
.

For reasons of notational economy, we will write Mu2 instead of Mu · u, where M is a matrix
and u is a vector.

We denote by z ∧ z′ the symplectic product of z = (x, p), z′ = (x ′, p′):

z ∧ z′ = p · x ′ − p′ · x,

where the dot is the usual (Euclidean) scalar product. In matrix notation,

z ∧ z′ = (z′)T J z, J =
[

0 I

−I 0

]
,

where J is the standard symplectic matrix (0 and I are the N × N zero and identity matrices).
We denote by Sp(N) the symplectic group of the (x, p) phase space: it consists of all real
2N × 2N matrices S such that Sz ∧ Sz′ = z ∧ z′; equivalently,

ST JS = SJST = J.

We denote by (·, ·) the L2-norm of functions on configuration RN
x and by ((·, ·)) that

of functions on phase space R2N
z . The corresponding norms are denoted by ‖·‖ and ‖|·‖|,

respectively.
S(Rm) is the Schwartz space of rapidly decreasing functions on Rm and we denote by F

the unitary Fourier transform defined on L2
(
RN

x

)
by

Fψ(p) =
(

1

2πh̄

)N/2 ∫
e− i

h̄
p·xψ(x) dNx. (15)

2. The Wigner wavepacket transform

In the following, φ will be a rapidly decreasing function normalized to unity:

φ ∈ S
(
RN

x

)
, ‖φ‖2

L2(RN
x )

= 1. (16)
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2.1. Definition and relation with the Wigner–Moyal transform

We associate with φ the integral operator Uφ : L2
(
RN

x

) −→ L2
(
R2N

z

)
defined by

Uφψ(z) =
(

1

2πh̄

)N/2

e
i

2h̄ p·x
∫

e− i
h̄
p·x ′

ψ(x ′)φ(x − x ′) dNx ′ (17)

and we call Uφ the ‘Wigner wavepacket transform’ associated with φ. This terminology is
justified by the fact that the operator Uφ is easily expressed in terms of the Wigner–Moyal
transform

W(ψ, φ)(x, p) =
(

1

2πh̄

)N ∫
RN

e− i
h̄
p·yψ

(
x +

1

2
y

)
φ

(
x − 1

2
y

)
dNy (18)

of the pair (ψ, φ) (see [6, 16]). In fact, performing the change of variable x ′ = 1
2 (x + y) in

(17) we get

Uφψ(z) =
(

1

2πh̄

)N/2

2−N

∫
e− i

2h̄ p·yψ
(

1

2
(x + y)

)
φ

(
1

2
(x − y)

)
dNy,

that is

Uφψ(z) =
(

πh̄

2

)N/2

W(ψ, φ)

(
1

2
z

)
. (19)

Remark 1. A standard—but by no means mandatory—choice is to take for φ the real
Gaussian

φh̄(x) =
(

1

πh̄

)N/4

exp

(
− 1

2h̄
|x|2

)
; (20)

the corresponding operator Uφ is then (up to an exponential factor) the ‘coherent state
representation’ familiar to quantum physicists.

2.2. The fundamental property

The interest of the Wigner wavepacket transform Uφ comes from the fact that it is an isometry
of L2

(
RN

x

)
onto a closed subspaceHφ of L2

(
R2N

z

)
and that it takes the operators x and −ih̄∂/∂x

into the operators x/2 + ih̄∂/∂p and p/2 − ih̄∂/∂x.

Theorem 2. The Wigner wavepacket transform Uφ has the following properties. (i) Uφ is an
isometry: the Parseval formula

((Uφψ,Uφψ ′)) = (ψ,ψ ′) (21)

holds for all ψ,ψ ′ ∈ S
(
RN

x

)
. In particular, U ∗

φUφ = I on L2
(
RN

x

)
. (ii) The range Hφ of

Uφ is closed in L2
(
R2N

z

)
(and is hence a Hilbert space), and the operator Pφ = UφU ∗

φ is the

orthogonal projection in L2
(
R2N

z

)
onto Hφ . (iii) The following intertwining relations:(

x

2
+ ih̄

∂

∂p

)
Uφψ = Uφ(xψ),

(
p

2
− ih̄

∂

∂x

)
Uφψ = Uφ

(
−ih̄

∂

∂x
ψ

)
(22)

hold for ψ ∈ S
(
RN

x

)
.

Proof. (i) Formula (21) is an immediate consequence of the property

((W(ψ, φ),W(ψ ′, φ′))) =
(

1

2πh̄

)N

(ψ,ψ ′)(φ, φ′) (23)
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of the Wigner–Moyal transform (see, e.g. [6], p 56; beware of the fact that Folland uses
normalizations different from ours). In fact, taking φ = φ′ we have

((Uφψ,Uφψ ′)) =
(

πh̄

2

)N ∫
W(ψ, φ)

(
1

2
z

)
W(ψ ′, φ)

(
1

2
z

)
d2Nz

= (2πh̄)N ((W(ψ, φ),W(ψ ′, φ)))

= (ψ,ψ ′)(φ, φ),

which is formula (21) since φ is normalized. To prove (ii), we note that P ∗
φ = Pφ and

P 2
φ = Uφ(U ∗

φUφ)U ∗
φ = U ∗

φUφ = Pφ;
hence, Pφ is indeed an orthogonal projection. Let us show that its range is Hφ ; the closedness
of Hφ will follow since the range of a projection in a Hilbert space always is closed. Since
U ∗

φUφ = I on L2
(
RN

x

)
, we have U ∗

φUφψ = ψ for every ψ in L2
(
RN

x

)
and hence the range of

U ∗
φ is L2

(
RN

x

)
. It follows that the range of Uφ is that of UφU ∗

φ = Pφ and we are done. (iii)
The verification of formulae (22) is purely computational, using differentiations and partial
integrations; it is therefore left to the reader. �

The intertwining formulae (22) show that the Wigner wavepacket transform takes the
usual quantization rules x −→ x, x −→ −ih̄ ∂

∂x
leading to the standard Schrödinger equation

to the phase-space quantization rules

x −→ 1

2
x + ih̄

∂

∂p
, p −→ 1

2
p − ih̄

∂

∂x
;

observe that these rules are independent of the choice of φ and that these rules are thus a
common features of all the transforms Uφ .

2.3. The range of Uφ

One should be aware of the fact that the Hilbert space Hφ is smaller than L2
(
R2N

z

)
. This is

intuitively clear since functions in L2
(
R2N

z

)
depend on twice as many variables as those in

L2
(
RN

x

)
of which Hφ is an isometric copy. Let us discuss this in some detail.

Theorem 3. (i) The range of the Wigner wavepacket transform Uφh̄
associated with the

Gaussian (20) consists of the functions � ∈ L2
(
R2N

z

)
for which the conditions(

∂

∂xj

− i
∂

∂pj

)[
exp

(
1

2h̄
|z|2

)
�(z)

]
= 0 for 1 � j � N (24)

hold. (ii) For every φ, the range of the Wigner wavepacket transform Uφ is isometric to Hφh̄
.

Proof. (i) We have Uφh̄
= e− i

2h̄ p·xVφh̄
, where the operator Vφh̄

is defined by

Vφψ(z) =
(

1

2πh̄

)N/2 ∫
e− i

h̄
p·x ′

φ(x − x ′)ψ(x ′) dNx ′.

It is shown in [22] that the range of Vφh̄
consists of all � ∈ L2

(
R2N

z

)
such that(

∂

∂xj

− i
∂

∂pj

) [
exp

(
1

2h̄
|p|2

)
�(z)

]
= 0 for 1 � j � N.

That the range of Uφh̄
is characterized by (24) follows by an immediate calculation that is left

to the reader. (ii) If Uφ1 and Uφ2 are two Wigner wavepacket transforms corresponding to the
choices φ1, φ2, then Uφ2U

∗
φ1

is an isometry of Hφ1 onto Hφ2 . �
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The above result leads us to address the following more precise question: given � ∈
L2

(
R2N

z

)
, can we find φ and ψ in L2

(
RN

x

)
such that � = Uφψ? We are going to see that

the answer is no. Intuitively speaking, the reason is the following: if � is too ‘concentrated’
in phase space, it cannot correspond via the inverse transform U−1

φ = U ∗
φ to a solution of the

standard Schrödinger equation, because the uncertainty principle would be violated. Let us
make this precise when the function � is a Gaussian. We first make the following obvious
remark: in view of condition (24), every Gaussian

�0(z) = λ exp

(
1

2h̄
|z|2

)
, λ ∈ C

is in the range of Uφh̄
. It turns out that not only does this particular Gaussian belong to the

range of every Wigner wavepacket transform Uφ , but so does also the compose �0 ◦ S for
every S ∈ Sp(N).

Theorem 4. Let G be a real positive-definite 2N × 2N matrix: G = GT > 0. Let
�G ∈ L2

(
R2N

z

)
be the Gaussian

�G(z) = exp

(
− 1

2h̄
Gz2

)
. (25)

(i) There exist ψ, φ ∈ S
(
RN

x

)
such that Uφψ = �G if and only if G ∈ Sp(N), in which case

we have

φ = αφh̄, ψ = 2N/2α (πh̄)N/4 φh̄,

where φh̄ is the Gaussian (20) and α is an arbitrary complex constant with modulus 1. (ii)
Equivalently, |�G|2 must be the Wigner transform Wψ of a Gaussian state

ψ(x) = c (det X)1/4 (πh̄)3N/4 exp

[
− 1

2h̄
(X + iY )x2

]
, (26)

with |c| = 1, X and Y real and symmetric, and X > 0.

Proof. In view of relation (19) between Uφ and the Wigner–Moyal transform, (19) is
equivalent to

W(ψ, φ)(z) =
(

2

πh̄

)N/2

exp

(
−2

h̄
Gz2

)
.

In view of Williamson’s symplectic diagonalization theorem [30], there exists S ∈ Sp(N)

such that G = ST DS, where D is the diagonal matrix

D =
[
� 0
0 �

]
, � = diag[λ1, . . . , λN ],

the numbers ±iλ1, . . . , λN , λj > 0, being the eigenvalues of JG−1; it follows that

W(ψ, φ)(S−1z) =
(

2

πh̄

)N/2

exp

(
−2

h̄
Dz2

)
.

In view of the metaplectic covariance property of the Wigner–Moyal transform (see (47) in
section 4), there exists a unitary operator Ŝ : S

(
RN

x

) −→ S
(
RN

x

)
such that

W(ψ, φ)(S−1z) = W(Ŝψ, Ŝ φ)(z);
hence, there is no restriction to assume S = I and

W(ψ, φ)(z) =
(

2

πh̄

)N/2

exp

(
−2

h̄
Dz2

)
.



Symplectically covariant Schrödinger equation in phase space 9271

By definition (18) of the Wigner–Moyal transform, this is the same thing as(
1

2πh̄

)N/2 ∫
e− i

h̄
p·yψ

(
x +

1

2
y

)
φ

(
x − 1

2
y

)
dNy = 2N exp

(
−2

h̄
Dz2

)
,

that is, in view of the Fourier inversion formula,

ψ

(
x +

1

2
y

)
φ

(
x − 1

2
y

)
= 2N

(
1

2πh̄

)N/2 ∫
e− i

h̄
p·y e− 2

h̄
Dz2

dNp

=
(

2

πh̄

)N/2

e− 1
h̄
�x2

∫
e

i
h̄
p·y e− 1

h̄
�p2

dNp.

Setting Q = 2� in the generalized Fresnel formula(
1

2πh̄

)N/2 ∫
e− i

h̄
p·y e− 1

2h̄ Qp2
dNp = (det Q)−1/2 e− 1

2h̄ Q−1y2

valid for all Q > 0, we thus have

ψ

(
x +

1

2
y

)
φ

(
x − 1

2
y

)
= 2N/2(det �)−1/2 exp

[
−1

h̄

(
�x2 +

1

4
�y2

)]
.

Setting u = x + 1
2y and v = x − 1

2y, this is

ψ(u)φ(v) = 2N/2(det �)−1/2 exp

[
− 1

4h̄
((� + �−1)(u2 + v2) + 2(� − �−1)u · v)

]
and this is only possible if there are no terms u · v. This condition requires that � = �−1;
since � is positive definite, we must have � = I and hence � = I . It follows that

ψ(u)φ(v) = 2N/2 exp

[
− 1

2h̄
(u2 + v2)

]
,

so that

ψ(x)φ(0) = ψ(0)φ(x) = 2N/2 exp

(
− 1

2h̄
x2

)
.

It follows that both ψ and φ are Gaussians of the type

ψ(x) = ψ(0) exp

(
− 1

2h̄
x2

)
, φ(x) = φ(0) exp

(
− 1

2h̄
x2

)
;

since φ is normalized this requires that φ = αφh̄ with |α| = 1 and hence

φ(0) = α

(
1

πh̄

)N/4

.

Since we have ψ(0)φ(0) = 2N/2, we must have

ψ(0) = α2N/2 (πh̄)N/4 ,

which concludes the proof of part (i) of the theorem. To prove (ii), recall from [16] that the
Wigner transform of the Gaussian (26) is given by the formula

Wψ(z) = exp

(
−1

h̄
Gz2

)
,

where

G =
[
X + YX−1Y YX−1

X−1Y X−1

]
.

It is immediate to verify that G ∈ Sp(N) and that G is symmetric positive definite. One proves
[11] that, conversely, every such G can be put in the above form, and which ends the proof of
(ii) since the datum of Wψ determines ψ up to a complex factor with modulus 1. �
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3. Phase-space Weyl calculus

Let HN be the (2N + 1)-dimensional Heisenberg group; it is (see, e.g. [6, 24]) the set of all
vectors

(z, t) = (x1, . . . , xN ;p1, . . . , pN ; t)

equipped with the multiplicative law

(z, t)(z′, t ′) = (
z + z′, t + t ′ + 1

2z ∧ z′).
3.1. The Schrödinger representation

The Schrödinger representation of HN is, by definition, the mapping T̂Sch which to every
(z0, t0) in HN associates the unitary operator T̂Sch(z0, t0) on L2

(
RN

x

)
defined by

T̂Sch(z0, t0)ψ(x) = exp

[
i

h̄

(
−t0 + p0 · x − 1

2
p0 · x0

)]
ψ(x − x0). (27)

A classical theorem due to Stone and von Neumann (see, for instance, [6, 24] for a proof) states
that the Schrödinger representation is irreducible (that is, no closed subspace of L2

(
RN

x

)
other

than {0} and L2
(
RN

x

)
is invariant by T̂Sch) and that every irreducible unitary representation of

HN is unitarily equivalent to T̂Sch: if T̂ is another irreducible representation of HN on some
Hilbert space H, then there exists a unitary operator U from L2

(
RN

x

)
to H which is bijective,

and such that the following intertwining formula holds:

[U ◦ T̂Sch](z, t) = [T̂ ◦ U ](z, t) for all (z, t) in HN .

Conversely, if U is a unitary operator for which this formula holds, then T̂ must be irreducible.
We emphasize—heavily!—that in the above statement it is nowhere assumed that H must be
L2

(
RN

x

)
; it can a priori be any Hilbert space, and in particular it can be (and will be!) any of

the spaces Hφ defined in theorem 2. We will come back to this point in a while, but let us first
recall how one passes from the Heisenberg group to the Weyl pseudo-differential calculus. In
Weyl calculus, one associates with a ‘symbol’ A = A(x, p) an operator Â on S

(
RN

x

)
by the

formula

Âψ(x) =
(

1

2πh̄

)N ∫ ∫
e

i
h̄
p·(x−y)A

(
1

2
(x + y), p

)
ψ(y) dNy dNp. (28)

This formula makes perfectly sense if, for instance, A ∈ S
(
R2N

z

)
and one easily verifies that

the ‘Weyl correspondence’ A
Weyl←→ Â leads to the standard quantization rules

x
Weyl←→ X̂ = x, p

Weyl←→ P̂ = −ih̄
∂

∂x
. (29)

For more general symbols, the double integral must be interpreted in some particular way.
For instance, if A belongs to the standard symbol class Sm

ρ,δ

(
R2N

z

)
with 0 � δ < ρ � 1 that is,

if for every compact K ⊂ RN
x and all multi-indices α, β ∈ NN there exists CK,α,β such that∣∣∂α

p∂β
x A(x, p)

∣∣ � CK,α,β(1 + |p|)m−ρ|α|+δ|β|,

then (28) should be viewed as an ‘oscillatory integral’. There are however other possible ways
to interpret this formula and make it rigorous; we refer to [5, 6, 31] for detailed discussions. (In
particular, it is shown in [31] that Â is a Hilbert–Schmidt operator if and only if A ∈ L2

(
RN

x

)
.)
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3.2. Heisenberg–Weyl operators

There is another very useful way of writing Weyl operators and this will lead us to Weyl calculus
in phase space. Setting t0 = 0 in formula (27), one obtains the so-called Heisenberg–Weyl
operators T̂Sch(z0)

T̂Sch(z0)ψ(x) = exp

[
i

h̄

(
p0 · x − 1

2
p0 · x0

)]
ψ(x − x0). (30)

It is easy to show, using Fourier analysis, that we can write operator (28) in the form

Âψ(x) =
(

1

2πh̄

)N ∫
(FσA)(z0)T̂Sch(z0)ψ(x) d2Nz0, (31)

provided that FσA, the ‘symplectic Fourier transform’ of A, exists. The latter is defined in
analogy with the ordinary Fourier transform on R2N

z by

FσA(z) =
(

1

2πh̄

)N ∫
e− i

h̄
z∧z′

A(z′) d2Nz′. (32)

The conditions of existence of FσA are actually the same as for the usual Fourier transform
on L2

(
R2N

z

)
to which it reduces replacing z by −Jz. Note that Fσ is an involution: F2

σ = I .

Remark 5. It is often convenient to write formula (31) more economically as

Â =
(

1

2πh̄

)N ∫
(FσA)(z)T̂Sch(z) d2Nz, (33)

where the right-hand side is interpreted as a ‘Bochner integral’, i.e. an integral with value in a
Banach space.

3.3. Extension to phase space

We now observe that when a Weyl operator is written in the form (31) or (33), it literally begs
to be extended to phase space! In fact, we can make the Heisenberg–Weyl operators act on
functions � in L2

(
R2N

z

)
by replacing definition (30) by its obvious extension

T̂Sch(z0)�(z) = exp

[
i

h̄

(
p0 · x − 1

2
p0 · x0

)]
�(z − z0)

and thereafter define the action of Â on � ∈ S
(
R2N

z

)
by the formula

Â�(z) =
(

1

2πh̄

)N ∫
(FσA)(z0)T̂Sch(z0)�(z) d2Nz0.

This (perfectly honest) choice would lead, using the method we will outline in section 5,
to the Torres–Vega equation

ih̄
∂�

∂t
= Ĥ

(
x + ih̄

∂

∂p
,−ih̄

∂

∂x

)
�

(see [28, 29]) which we discussed in [12]. Since we prefer, for reasons of symplectic
covariance, a more symmetric phase-space Schrödinger equation in which x and p are placed
on equal footing, we will replace T̂Sch(z0) with the operator T̂ph(z0) given by

T̂ph(z0)�(z) = exp
(
− i

2h̄
z ∧ z0

)
�(z − z0) (34)
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(the subscript ‘ph’ standing for phase space) and then define the phase-space Weyl operator
associated with A by the formula

Âph�(z) =
(

1

2πh̄

)N ∫
(FσA)(z0)T̂ph(z0)�(z) d2Nz0. (35)

This operator Âph acts continuously on S
(
R2N

z

)
provided that A is a bona fide symbol and can

hence be extended to L2
(
R2N

z

)
by continuity. In accordance with the convention in remark 5,

we will often write for short

Âph =
(

1

2πh̄

)N ∫
(FσA)(z)T̂ph(z) d2Nz, (36)

where the right-hand side is again viewed as a Bochner integral.
Observe that the operators T̂ph satisfy the same commutation relation as the usual Weyl–

Heisenberg operators:

T̂ph(z1)T̂ph(z0) = exp
(
− i

h̄
z0 ∧ z1

)
T̂ph(z0)T̂ph(z1) (37)

and we have

T̂ph(z0)T̂ph(z1) = exp
( i

2h̄
z0 ∧ z1

)
T̂ph(z0 + z1). (38)

These properties suggest that we define the phase-space representation T̂ph of HN in
analogy with (27) by setting for � ∈ L2

(
R2N

z

)
T̂ph(z0, t0)�(z) = e

i
h̄
t0 T̂ph(tz0)�(z). (39)

Clearly, T̂ph(z0, t0) is a unitary operator in L2
(
R2N

z

)
; moreover, a straightforward calculation

shows that

T̂ph(z0, t0)T̂ph(z1, t1) = T̂ph
(
z0 + z1, t0 + t1 + 1

2z0 ∧ z1
)
. (40)

Hence, T̂ph is indeed a representation of the Heisenberg group in L2
(
R2N

z

)
. We claim that the

following diagram is commutative for every Wigner wavepacket transform Uφ :

L2
(
RN

x

) Uφ−→ L2
(
R2N

z

)
T̂Sch ↓ ↓ T̂ph

L2
(
RN

x

) Uφ−→ L2
(
R2N

z

)
.

More precisely

Theorem 6. Let Uφ be an arbitrary Wigner wavepacket transform. (i) We have

T̂ph(z0, t0)Uφ = UφT̂Sch(z0, t0); (41)

hence, the representation T̂ph is unitarily equivalent to the Schrödinger representation and
thus an irreducible representation of HN on each of the Hilbert spaces Hφ . (ii) The following
intertwining formula holds for every operator Âph:

ÂphUφ = UφÂSch. (42)

Proof. Proof of (i). It suffices to prove formula (41) for t0 = 0, that is

T̂ph(z0)Uφ = UφT̂Sch(z0). (43)

Let us write the operator Uφ in the form Uφ = e
i

2h̄ p·xWφ , where the operator Wφ is thus
defined by

Wφψ(z) =
(

1

2πh̄

)N/2 ∫
e− i

h̄
p·x ′

φ(x − x ′)ψ(x ′) dNx ′. (44)
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We have, by definition of T̂ph(z0),

T̂ph(z0)Uφψ(z) = exp
[
− i

2h̄
(z ∧ z0) + (p − p0) · (x − x0)

]
Wφψ(z − z0)

= exp
[ i

2h̄
(−2p · x0 + p0 · x0 + p · x)

]
Wφψ(z − z0)

and, by definition of Wφψ ,

Wφψ(z − z0) =
(

1

2πh̄

)N/2 ∫
e− i

h̄
(p−p0)·x ′

φ(x − x ′ − x0)ψ(x ′) dNx ′

=
(

1

2πh̄

)N/2

e
i
h̄
(p−p0)·x0

∫
e− i

h̄
(p−p0)·x ′′

φ(x − x ′′)ψ(x ′′) dNx ′′,

where we have set x ′′ = x ′ + x0. The overall exponential in T̂ph(z0)Uφψ(z) is thus

u1 = exp
[ i

2h̄
(−p0 · x0 + p · x − 2p · x ′′ + 2p0 · x ′′)

]
.

Similarly,

Uφ(T̂Sch(z0)ψ)(z) =
(

1

2πh̄

)N/2

e
i

2h̄ p·x

×
∫

e− i
h̄
p·x ′′

φ(x − x ′′) e
i
h̄
(p0·x ′′− 1

2 p0·x0)ψ(x ′′ − x0) dNx ′′,

yielding the overall exponential

u2 = exp

[
i

h̄

(
1

2
p · x − p · x ′′ + p0 · x ′′ − 1

2
p0 · x0

)]
= u1,

which proves (43). The irreducibility statement follows from Stone–von Neumann’s theorem.
Let us prove formula (42). In view of formula (43), we have

ÂphUφψ =
(

1

2πh̄

)N ∫
(FσA)(z0)T̂ph(z0)(Uφψ)(z) d2Nz0

=
(

1

2πh̄

)N ∫
(FσA)(z0)Uφ(T̂Sch(z0)ψ)(z) d2Nz0

=
(

1

2πh̄

)N

Uφ

(∫
(FσA)(z0)(T̂Sch(z0)ψ)(z) d2Nz0

)
= Uφ(ÂSchψ)(z)

(the passage from the second equality to the third is legitimated by the fact that Uφ is both
linear and continuous). �

4. Metaplectic covariance

Since Sp(N) is the symmetry group for the usual CCR (canonical commutation relations)

[X̂j , P̂ k] = ih̄δjk

(for X̂j = xj , P̂ k = −ih̄∂/∂xk), the uniqueness of these relations implies that for each S in
Sp(N) there must be some associated unitary operator linking them to quantization. These
operators are the metaplectic operators.
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4.1. Metaplectic operators

Let us recall how the metaplectic operators are defined (for details and proofs see, for instance,
[6, 8, 9, 16]). Assume that S is a free symplectic matrix, that is S ∈ Sp(N) and

S =
[
A B

C D

]
with det B = 0.

To every such S, one associates the operators ±ŜW,m defined by the formula

ŜW,mψ(x) =
(

1

2π ih̄

)N/2 im√|det B|
∫

e
i
h̄
W(x,x ′)ψ(x ′) dNx ′; (45)

here W is Hamilton’s characteristic function familiar from classical mechanics (see, for
instance, [7, 9]):

W(x, x ′) = 1
2DB−1x2 − B−1x · x ′ + 1

2B−1Ax ′2 (46)

and m is an integer (‘Maslov index’) corresponding to a choice of arg det B. The operators
ŜW,m are a sort of generalized Fourier transform, and it is not difficult to check that they are
unitary. In addition, the inverse of ŜW,m is given by

Ŝ−1
W,m = ŜW ∗,m∗ , W ∗(x, x ′) = −W(x ′, x), m∗ = N − m;

hence, ŜW,m generate a group: this group is the metaplectic group Mp(N) (see [9] for a
complete discussion of the properties of Mp(N) and of the associated Maslov indices). If we
choose for S the standard symplectic matrix

J =
[

0 I

−I 0

]
,

the quadratic form (46) reduces to W(x, x ′) = −x · x ′; choosing arg det B = arg det I = 0,
the corresponding metaplectic operator is

Ĵψ(x) =
(

1

2π ih̄

)N/2 ∫
e− i

h̄
x·x ′

ψ(x ′) dNx ′ = i−N/2Fψ(x ′),

where F thus is the usual unitary Fourier transform (15).
The Wigner–Moyal transform enjoys the following metaplectic covariance property: for

every Ŝ ∈ Mp(N) with projection S ∈ Sp(N) we have

W(Ŝψ, Ŝφ) = W(ψ, φ) ◦ S−1. (47)

Since the Wigner wavepacket transform is defined in terms of W(ψ, φ) by formula (19), it
follows that

Uφ(Ŝψ) =
(

πh̄

2

)N/2

W(Ŝψ, φ)

(
1

2
z

)

=
(

πh̄

2

)N/2

W(Ŝψ, Ŝ(Ŝ−1φ))

(
1

2
z

)

=
(

πh̄

2

)N/2

W(ψ, Ŝ−1φ))

(
1

2
S−1(z)

)
and hence

Uφ(Ŝψ) = (
UφŜ

ψ
) ◦ S−1, φŜ = Ŝ−1φ. (48)
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4.2. Metaplectic group and Weyl calculus

In [13] we have shown, following an idea of Mehlig and Wilkinson [17], that the metaplectic
group is generated by operators of the type

Ŝψ(x) =
(

1

2πh̄

)N/2 iν(S)

√|det(S − I )|
∫

e
i

2h̄ MSz2
0 T̂Sch(z0)ψ(x) d2Nz0, (49)

where det(S − I ) = 0,MS is the symplectic Cayley transform of S:

MS = 1
2J (S + I )(S − I )−1

and ν(S) is the Conley–Zehnder index (modulo 4) of a path joining the identity to I in Sp(N)

(see, for instance, [21] for a discussion of this index). For instance, if Ŝ = ŜW,m, then

ŜW,mψ(x) =
(

1

2πh̄

)N/2 im−Inert Wxx

√|det(S − I )|
∫

e
i

2h̄ MSz2
0 T̂Sch(z0)ψ(x) d2Nz0, (50)

where Inert Wxx is the number of negative eigenvalues of the Hessian matrix of W . Formulae
(49) and (50) are thus the Weyl representations of the metaplectic operators Ŝ and ŜW,m.
They allow us to define phase-space metaplectic operators Ŝph in the following way: if
det(S − I ) = 0, we set

Ŝph�(z) =
(

1

2πh̄

)N/2 iν(S)

√|det(S − I )|
∫

e
i

2h̄ MSz2
0 T̂ph(z0)�(z) d2Nz0; (51)

the operators Ŝph are in one-to-one correspondence with the metaplectic operators Ŝ and
thus generate a group which we denote by Mpph(N) (the ‘phase-space metaplectic group’).
In following lemma, we give alternative descriptions of the operators (49) in terms of the
operators T̂ph.

Lemma 7. Let Ŝph ∈ Mpph(N) have projection S ∈ Mp(N) such that det(S − I ) = 0. We
have

Ŝph =
(

1

2π

)N

iν(S)
√

|det(S − I )|
∫

e− i
2 Sz∧zT̂ph((S − I )z) d2Nz (52)

and

Ŝph =
(

1

2π

)N

iν(S)
√

|det(S − I )|
∫

T̂ph(Sz)T̂ph(−z) d2Nz. (53)

Proof. It is mutatis mutandis the proof of lemma 1 in [13]: we have

1
2J (S + I )(S − I )−1 = 1

2J + J (S − I )−1;
hence, in view of the antisymmetry of J ,

MSz · z = J (S − I )−1z · z = (S − I )−1z ∧ z.

Performing the change of variables z �−→ (S − I )z, we can rewrite the integral on the
right-hand side of (50) as∫

e
i
2 〈MSz,z〉T̂ (z) d2Nz =

√
|det(S − I )|

∫
e

i
2 z∧(S−I )zT̂ph((S − I )z) d2Nz

=
√

|det(S − I )|
∫

e− i
2 Sz∧zT̂ph((S − I )z) d2Nz,
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hence (52). Taking into account formula (38) for the product of two metaplectic operators
T̂ph(z0) and T̂ph(z1), we get

T̂ ((S − I )z) = e
i
2 σSz∧z T̂ph(Sz)T̂ph(−z)

and formula (53) follows. �

This result will allows us to show in a simple way that the well-known ‘metaplectic
covariance’ relation

Â ◦ SSch = Ŝ−1ÂSchŜ (54)

valid for any Ŝ ∈ Mp(N) with projection S ∈ Sp(N) extends to the phase-space Weyl
operators Âph provided one replaces Mp(N) with Mpph(N).

Theorem 8. Let S be a symplectic matrix and Ŝph any of the two operators in Mpph(N)

associated with S. The following phase-space metaplectic covariance formulae hold:

ŜphT̂ph(z0)Ŝ
−1
ph = T̂ph(Sz), Â ◦ Sph = Ŝ−1

ph ÂphŜph. (55)

Proof. To prove the first formula in (55), it is sufficient to assume that det(S − I ) = 0 and
that Ŝph is thus given by formula (51), since such operators generate Mpph(N). Let us thus
prove that

T̂ph(Sz0)Ŝph = ŜphT̂ph(z0) if det(S − I ) = 0. (56)

Using formula (53) in lemma 7 and setting

CS =
(

1

2π

)N

iν(S)
√

|det(S − I )|,

we have

T̂ph(Sz0)Ŝph = CS

∫
T̂ph(Sz0)T̂ph(Sz)T̂ph(−z) d2Nz

and

ŜphT̂ph(z0) = CS

∫
T̂ph(Sz)T̂ph(−z)T̂ph(z0) d2Nz.

Setting

A(z0) =
∫

T̂ph(Sz0)T̂ph(Sz)T̂ph(−z) d2Nz

and

B(z0) =
∫

T̂ph(Sz)T̂ph(−z)T̂ph(z0) d2Nz,

we have, by repeated use of (38),

A(z0) =
∫

e
i

2h̄ �1(z,z0)T̂ph(Sz0 + (S − I )z) d2Nz,

B(z0) =
∫

e
i

2h̄ �2(z,z0)T̂ph(z0 + (S − I )z) d2Nz,

where the phases �1 and �2 are given by

�1(z, z0) = z0 ∧ z − S(z + z0) ∧ z,

�2(z, z0) = −Sz ∧ z + (S − I )z ∧ z0.
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Performing the change of variables z′ = z + z0 in the integral defining A(z0), we get

A(z0) =
∫

e
i

2h̄ �1(z
′−z0,z0)T̂ph(z0 + (S − I )z′) d2Nz′

and

�1(z
′ − z0, z0) = z0 ∧ (z′ − z0) − Sz′ ∧ (z′ − z0)

= (S − I )z′ ∧ z0 − Sz′ ∧ z′

= �2(z
′, z0),

hence (56). The second formula in (55) easily follows from the first: noting that the symplectic
Fourier transform (32) satisfies

Fσ [A ◦ S](z) =
(

1

2πh̄

)N ∫
e− i

h̄
z0∧z′

A(Sz′) d2Nz′

=
(

1

2πh̄

)N ∫
e− i

h̄
Sz0∧z′

A(z′) d2Nz′

= FσA(Sz),

we have

Â ◦ Sph =
(

1

2πh̄

)N ∫
FσA(Sz)T̂ph(z) d2Nz

=
(

1

2πh̄

)N ∫
FσA(z)T̂ph(S

−1z) d2Nz

=
(

1

2πh̄

)N ∫
FσA(z)Ŝ−1

ph T̂ph(z)Ŝph d2Nz,

which concludes the proof. �

It can be shown, adapting the proof of a classical result of Shale [25] (see [31], chapter
30, for a proof), that the metaplectic covariance formula

Â ◦ Sph = Ŝ−1
ph ÂphŜph

actually characterizes the phase-space Weyl operators Âph. That is, any operator satisfying
this relation for all operators Ŝph ∈ Mpph(N) is necessarily of the type

Âph =
(

1

2πh̄

)N ∫
(FσA)(z)T̂ph(z) d2Nz.

For example, if H is the Hamiltonian function of the one-dimensional harmonic oscillator
put in normal form

H = ω

2
(p2 + x2), (57)

we get

Ĥph = −h̄2ω

2
∇2

z − i
h̄ω

2
z ∧ ∇z +

ω

8
|z|2, (58)

where ∇z is the gradient operator in (x, p).

5. Schrödinger equation in phase space

We now have all the machinery needed to justify and study the Schrödinger equation in phase
space.
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5.1. The relationship between ψ and �

The following consequence of theorem 6 links standard ‘configuration-space’ quantum
mechanics to phase-space quantum mechanics via the Wigner wavepacket transform and
the extended Heisenberg group studied in the previous sections. For clarity, we denote by
ÂSch the usual Weyl operator associated by (31) with an observable A.

Corollary 9. Let Uφ, φ ∈ S
(
RN

x

)
, be an arbitrary Wigner wavepacket transform. (i) If

ψ = ψ(x, t) is a solution of the usual Schrödinger equation

ih̄
∂ψ

∂t
= ĤSchψ,

then � = (Uφψ)(z, t) is a solution of the phase-space Schrödinger equation

ih̄
∂�

∂t
= Ĥph�. (59)

(ii) Assume that � is a solution of this equation and that �0 = �(·, 0) belongs to the range
Hφ of Uφ . Then, �(·, t) ∈ Hφ for every t for which � is defined.

Proof. Since time derivatives obviously commute with Uφ we have, using (42),

ih̄
∂�

∂t
= Uφ(ĤSchψ) = Ĥph(Uφψ) = Ĥph�,

hence (i). Statement (ii) follows. �

The above result leads to the following interesting questions: since the solutions of the
phase-space Schrödinger equation (59) exist independently of the choice of any isometry Uφ ,
what is the difference between the physical interpretations of the corresponding configuration-
space wavefunctions ψ = U ∗

φ� and ψ ′ = U ∗
φ′�? The answer is that there is no difference at

all provided that φ and φ′ are not orthogonal.

Theorem 10. Let � be a solution of the phase-space Schrödinger equation (59) with initial
condition �0 and define functions ψ1 and ψ2 in L

(
RN

x

)
by

� = Uφ1ψ1 = Uφ2ψ2.

We assume that �0 ∈ Hφ1 ∩ Hφ2 .
(i) We have �(·, t) ∈ Hφ1 ∩ Hφ2 for all t.
(ii) If (φ1, φ2) = 0, then ψ1 and ψ2 are orthogonal quantum states: (ψ1, ψ2) = 0.

Proof. Property (i) follows from corollary 9(ii). Let us prove (ii). In view of formula (23),
we have

((Uφ1ψ1, Uφ2ψ2)) = (ψ1, ψ2)(φ1, φ2),

that is ‖�‖|2 = λ(ψ1, ψ2) with λ = (φ1, φ2). The assertion follows. �

5.2. Spectral properties

The operators Âph defined by (35) enjoy the same property which makes the main appeal of
ordinary Weyl operators, namely that they are self-adjoint if and only if their symbols are real.

Theorem 11. Let Âph and ÂSch be the operators associated with a symbol A. We assume
that the symplectic Fourier transform FσA is defined. (i) The operator Âph is self-adjoint in
L2

(
R2N

z

)
if and only if A = A. (ii) Every eigenvalue of ÂSch is also an eigenvalue of Âph.
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Proof. (i) By definitions of Âph and T̂ph, we have

Âph�(z) =
(

1

2πh̄

)N ∫
FσA(z0) e− i

2h̄ z∧z0�(z − z0) d2Nz0

=
(

1

2πh̄

)N ∫
FσA(z − z′) e

i
2h̄ z∧z′

�(z′) d2Nz′;

hence, the kernel of the operator Âph is

K(z, z′) =
(

1

2πh̄

)N

e
i

2h̄ z∧z′FσA(z − z′).

In view of the standard theory of integral operators, Âph is self-adjoint if and only if
K(z, z′) = K(z′, z); in view of the antisymmetry of the symplectic product, we have

K(z′, z) =
(

1

2πh̄

)N

e
i

2h̄ z∧z′FσA(z′ − z).

Hence, our claim since by definition (32) of the symplectic Fourier transform

FσA(z′ − z) = (
1

2πh̄

)N
∫

e− i
h̄
(z−z′)∧z′′

A(z′′) d2Nz′′ = FσA(z − z′).

(ii) Assume that ÂSchψ = λψ ; choosing φ ∈ S
(
RN

x

)
we have, using the intertwining formula

(42),

Uφ(ÂSchψ) = Âph(Uφψ) = λUφψ;
hence, λ is an eigenvalue of Âph. �

Note that there is no reason for an arbitrary eigenvalue of Âph to be an eigenvalue of
ÂSch; this is only the case if the corresponding eigenvector belongs to the range of a Wigner
wavepacket transform.

5.3. The case of quadratic Hamiltonians

There is an interesting application of the theory of the metaplectic group outlined in section 4
to the Schrödinger’s equation in phase space. Assume that H is a quadratic Hamiltonian
(for instance, the harmonic oscillator Hamiltonian); the flow determined by the associated
Hamilton equations is linear and consists of symplectic matrices St . Letting time vary, thus
obtain a curve t �−→ St in the symplectic group Sp(N) passing through the identity I at time
t = 0; following general principles to that curve we can associate (in a unique way) a curve
t �−→ Ŝt of metaplectic operators. Let now ψ0 = ψ0(x) be some square-integrable function
and set ψ(x, t) = Ŝtψ0(x). Then, ψ is just the solution of the standard Schrödinger equation

ih̄
∂ψ

∂t
= Ĥψ, ψ(t = 0) = ψ0 (60)

associated with the quadratic Hamiltonian function H. (Equivalently, Ŝt is just the propagator
for (60).) This observation allows us to solve explicitly the phase-space Schrödinger equation
for any such H, as explained below. Since the wavepacket transform U automatically takes
the solution ψ of (60) to a solution of the phase-space Schrödinger equation

ih̄
∂�

∂t
= Ĥph�,

we have

�(z, t) = (Ŝt )ph�(z, 0).
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Assume now that the symplectic matrix St is free and det(St − I ) = 0. Then, by (51),

�(z, t) =
(

1

2πh̄

)N/2 im(t)−Inert Wxx(t)

√|det(St − I )|
∫

e
i

2h̄ zT
0 MS(t)z0 T̂ph(z0)�(z, 0) d2Nz0, (61)

where m(t),Wxx(t) and MS(t) correspond to St . If t is such that St is not free, or
det(St −I ) = 0, then it suffices to write the propagator Ŝt as the product of two operators (50);
note however that such values of t are exceptional and that the solution (61) can be extended
by taking the limit near such t provided that takes some care in calculating the Maslov indices.

Let us illustrate this when H is the harmonic oscillator Hamiltonian function (57). The
one-parameter group (St ) is in this case given by

St =
[

cos ωt sin ωt

−sin ωt cos ωt

]

and the Hamilton principal function by

W(x, x ′; t) = 1

2 sin ωt
((x2 + x ′2) cos ωt − 2xx ′).

A straightforward calculation yields

MS(t) =
[ sin ωt

−2 cos ωt+2 0
0 sin ωt

−2 cos ωt+2

]
= 1

2

[
cot

(
ωt
2

)
0

0 cot
(

ωt
2

)]

and

det(St − I ) = 2(1 − cos ωt) = 4 sin2

(
ωt

2

)
;

moreover,

Wxx(t) = − tan

(
ωt

2

)
.

Insertion in formula (61) yields the explicit solution

�(z, t) = iν(t)

2
∣∣2πh̄ sin

(
ωt
2

)∣∣1/2

∫
exp

[
i

4h̄

(
x2

0 + p2
0

)
cot

(
ωt

2

)]
T̂ph(z0)�(z, 0) d2z0,

with

ν(t) =




0, if 0 < t <
π

ω
,

−2, if −π

ω
< t < 0.

6. Interpretation of the phase-space wavefunction Ψ

Let us shortly discuss the probabilistic interpretation of the solutions � of the phase-space
Schrödinger equation

ih̄
∂�

∂t
= Ĥph�;

we will in particular elucidate the role played by φ.
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6.1. Marginal probabilities

Let ψ be in L2
(
RN

x

)
; if ψ is normalized, ‖ψ‖ = 1, then so is � = Uφψ in view of the Parseval

formula (21): ‖|�‖| = 1. It follows that |�|2 is a probability density in phase space. It turns
out that by an appropriate choice of φ the marginal probabilities can be chosen arbitrarily
close to |ψ |2 and |Fψ |2.

Theorem 12. Let ψ ∈ L2
(
RN

x

)
and set � = Uφψ . (i) We have∫

|�(x, p)|2 dNp = (|φ|2 ∗ |ψ |2)(x), (62)∫
|�(x, p)|2 dNx = (|Fφ|2 ∗ |Fψ |2)(p). (63)

(ii) Let 〈A〉ψ = (ASchψ,ψ) be the mathematical expectation of the symbol A in the normalized
quantum state ψ . We have

〈A〉ψ = ((Aph�,�)), � = Uφψ. (64)

Proof. We have, by definition of �,

|�(z)|2 =
(

1

2πh̄

)N ∫ ∫
e− i

h̄
p·(x ′−x ′′)φ(x − x ′)φ(x − x ′′)ψ(x ′)ψ(x ′′) dNx ′ dNx ′′.

Since we have, by the Fourier inversion formula,∫
e− i

h̄
p·(x ′−x ′′) dNp = (2πh̄)Nδ(x ′ − x ′′),

it follows that ∫
|�(z)|2 dNp =

∫ ∫ ∫
δ(x ′ − x ′′)|φ(x − x ′)|2|ψ(x ′)|2 dNx ′ dNx ′′

=
∫ [∫

δ(x ′ − x ′′) dNx ′′
]

|φ(x − x ′)|2|ψ(x ′)|2 dNx ′

=
∫

|φ(x − x ′)|2|ψ(x ′)|2 dNx ′,

hence formula (62). To prove (63), we note that in view of the metaplectic covariance formula
(48) for the wavepacket transform we have

UĴφ(Ĵψ)(x, p) = Uφψ(−p, x),

where Ĵ = i−N/2F is the metaplectic Fourier transform. It follows that

UFφ(Fψ)(x, p) = i−NUφψ(−p, x)

and hence changing (−p, x) into (x, p):

Uφψ(x, p) = iNUFφ(Fψ)(p,−x).

Hence, using (62),∫
|�(x, p)|2 dNx =

∫
|UFφ(Fψ)(p,−x)|2 dNx

=
∫

|UFφ(Fψ)(p, x)|2 dNx

= (|Fφ|2 ∗ |Fψ |2)(p),
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which concludes the proof of (63). To prove (64), it suffices to note that in view of the
intertwining formula (42) and the fact that U ∗

φ = U−1
φ , we have

((Aph�,�)) = ((ÂphUφψ,Uφψ))

= (U ∗
φ ÂphUφψ,ψ)

= (ÂSchψ,ψ). �

The above result shows that the marginal probabilities of |�|2 are just the traditional
position and momentum probability densities |ψ |2 and |Fψ |2 ‘smoothed out’ by convoluting
them with |φ|2 and |Fφ|2, respectively.

6.2. The limit h̄ → 0

Assume now that we choose for φ the Gaussian (20):

φ(x) = φ�(x) =
(

1

πh̄

)N/4

exp

(
− 1

2h̄
|x|2

)
.

The Fourier transform of φ is identical to φ

Fφh̄(p) =
(

1

πh̄

)N/4

exp

(
− 1

2h̄
|p|2

)
= φh̄(p);

hence, setting �h̄ = Uφh̄
ψ and observing that |φ�|2 → δ when h̄ → 0,∫

|�h̄(x, p)|2 dNp = (|ψ |2 ∗ |φh̄|2)(x)
h̄→0−→ |ψ(x)|2,∫

|�h̄(x, p)|2 dNx = (|Fψ |2 ∗ |φh̄|2)(p)
h̄→0−→ |Fψ(p)|2.

Thus, in the limit h̄ → 0, the square of the modulus of the phase-space wavefunction becomes
a true joint probability density for the probability densities |ψ |2 and |Fψ |2.

7. Discussion and remarks

We have exposed some theoretical background for a mathematical justification of the phase-
space Schrödinger equation

ih̄
∂

∂t
�(x, p, t) = H

(
1

2
x + ih̄

∂

∂p
,

1

2
p − ih̄

∂

∂x

)
�(x, p, t).

The aesthetic appeal of this equation is obvious—at least if one likes the Hamiltonian
formulation of mechanics. But is this equation useful? While the notion of ‘usefulness’
in science more than often has a relative and subjective character, one of the main practical
appeals of the phase-space Schrödinger equation is that it governs the quantum evolution of
both pure and mixed states, while the solutions of the usual Schrödinger equation are, by
definition, only pure states. Another of the advantages of the phase-space approach is, as
pointed out in [19], the availability of factorization methods for the Hamiltonian, for instance,
SUSY. From a practical point of view, it could be held against Schrödinger equations in
2N -dimensional phase space that they are uninteresting because they involve solving a partial
differential equation in 2N + 1 variables instead of N + 1 as for the ordinary Schrödinger
equation. But this is perhaps a somewhat stingy reservation especially in times where modern
computing techniques allow an efficient processing of large strings of independent variables.
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It would perhaps be interesting to make explicit the relationship between the theory of
the Schrödinger equation in phase space we have sketched and other approaches to quantum
mechanics in phase space, for instance, the ‘deformation quantization’ of Bayen et al [3], and
whose master equation is the ‘quantum Liouville equation’.

We would like to end this section—and paper!—by discussing a little bit the possible
physical interpretation of the phase-space Schrödinger equation. Recall that we showed in
theorem 4 that a phase-space Gaussian

�G(z) = exp

(
− 1

2h̄
Gz2

)
, G = GT > 0

is in the range of any of the Wigner wavepacket transforms Uφ if and only if G ∈ Sp(N) and
that in this case

Wψ(z) = |�G(z)|2 = exp

(
−1

h̄
Gz2

)
for some (pure) Gaussian state ψ . Let us more generally consider Gaussians

�M(z) = exp

(
−1

h̄
Mz2

)
,

where M is a positive-definite symmetric real matrix. One proves that �M is the Wigner
transform W(ρ̂) of a (usually mixed) quantum state if and only if M−1 + iJ is positive definite
and Hermitian:

(M−1 + iJ )∗ = M−1 + iJ � 0. (65)

The probabilistic meaning of this condition is the following: defining as usual the covariance
matrix of the state ρ̂ by

� = h̄

2
M−1,

condition (65) can be rewritten as(
� + i

h̄

2
J

)∗
= � + i

h̄

2
J � 0, (66)

which is equivalent to the uncertainty principle of quantum mechanics (see [26, 27]; we have
also discussed this in [10]). For instance, when N = 1, the matrix

� =
[

�x2 �(x, p)

�(x, p) �p2

]
satisfies (66) if and only if

�x2�p2 � 1
4h̄

2 + �(x, p),

which is the form of the Heisenberg inequality that should be used as soon as correlations are
present, and not the usual textbook inequality �x�p � 1

2h̄.
It turns out that conditions (65) and (66) have a simple topological interpretation: we have

shown in our previous work [10, 11] that they are equivalent to the third condition.
The phase-space ball B(

√
h̄) : |z| � h̄ can be embedded into the ‘Wigner ellipsoid’

WM : Mz2 � h̄ using symplectic transformations (linear or not). Equivalently, the symplectic
capacity (or ‘Gromov width’) of WM is at least πh̄ = 1

2h, one half of the quantum of action:
c(WM) � 1

2h.
We have discussed in some detail in [10, 11] how this result allows a ‘coarse graining’

of phase space by symplectic quantum cells, which we dubbed ‘quantum blobs’. It appears
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that it is precisely this coarse graining that prevents Gaussians �M with Wigner ellipsoids
smaller than a ‘quantum blob’ to represent a quantum state. Is this to say that if the Wigner
ellipsoid of �M has exactly symplectic capacity 1

2h then �M is a pure state? No, because such
states are characterized by the fact that the associated Wigner ellipsoid is exactly the image
of the ball B(

√
h̄) by a symplectic transformation since they are described by the inequality

Gz2 = (Sz)2 � h̄ in view of theorem 4, and there are infinitely many ellipsoids with symplectic
capacity 1

2h which are not the image of B(
√

h̄) by a symplectic transformation. However, we
have shown in [10, 11] that if the ellipsoid WM : Mz2 � h̄ has symplectic capacity 1

2h then
one can associate with WM a unique pure Gaussian state. The argument goes as follows: if
c(WM) = 1

2h, then S and S ′ in Sp(N) are such that

S(B(
√

h̄)) ⊂ WM, S ′(B(
√

h̄)) ⊂ WM;
then, there exists R ∈ U(N) = Sp(N) ∩ O(2N) such that S = RS ′ (the proof of this
property is not entirely trivial) and hence ST S = (S ′)T S ′. It follows that the ellipsoid
WG : Gz2 � h̄,G = ST S, is uniquely determined by WM and that the pure Gaussian state
corresponding to

�G(z) = exp

(
− 1

2h̄
Gz2

)
is canonically associated with the mixed state �M , which does not in general belong to the
range of any Wigner wavepacket transform Uφ . It would be interesting to generalize this
result to arbitrary functions � ∈ L2

(
R2N

z

)
by defining, in analogy with the Gaussian case,

a ‘Wigner set’ W� associated with �. One could then perhaps prove that � represents an
arbitrary (mixed) quantum state provided that W� has a symplectic capacity at least 1

2h. But
enough is enough! We hope to come back to these possibilities in the future.
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